Adenosine linking reduced O2 to arteriolar NO release in intestine is not formed from extracellular ATP.
نویسندگان
چکیده
We have previously reported that adenosine formed in response to reduced arteriolar and/or tissue PO(2) preserves endothelial nitric oxide (NO) synthesis during sympathetic vasoconstriction in the rat intestine. To more precisely identify the site and mechanism of adenosine formation under these conditions, we tested the hypothesis that ATP released in response to reduced O(2) levels serves as a source of adenosine. Direct application of ATP to the wall of first-order arterioles elicited dose-dependent dilations of 15-33% above resting diameter that were reduced by 71-80% by the 5'-ectonucleotidase inhibitor alpha,beta-methyleneadenosine 5'-diphosphate (AOPCP, 4.5 x 10(-5) M) and completely abolished by N(G)-monomethyl-L-arginine (L-NMMA, 10(-4) M). Under control conditions, sympathetic nerve stimulation at 3 and 8 Hz induced arteriolar constrictions of 11 +/- 1 and 19 +/- 1 microm, respectively. These responses were enhanced by 58-69% in the presence of L-NMMA or when local PO(2) was maintained at resting levels. However, in the presence of AOPCP, the enhancing effects of L-NMMA and the high O(2) superfusate on sympathetic constriction were preserved. These results suggest that, although exogenously applied ATP can stimulate arteriolar NO release in the intestine largely through its sequential extracellular hydrolysis to adenosine, this process does not contribute to adenosine formation and sustained NO release during sympathetic constriction in this vascular bed.
منابع مشابه
Reduced PO(2) and adenosine formation preserve arteriolar nitric oxide synthesis during sympathetic constriction in the rat intestine.
Previous reports by this laboratory have indicated that a flow-dependent fall in arteriolar wall PO(2 )may be a stimulus for the sustained release of endothelial nitric oxide (NO) during sympathetic vasoconstriction in the superfused rat intestine. In this study, we tested the hypothesis that locally formed adenosine serves as the link between the fall in local PO(2) and NO synthesis under thes...
متن کاملComparing Human Sperm Quality Preserved at Two Different Temperatures; Effect of Trolox, Coenzyme Q10 and Extracellular Adenosine Triphosphate
Cooling method was proposed to maintain the sperm quality for several days. Nevertheless, during this procedure, sperm is encountered to “cold shock”, and its quality decreases time-dependently. This study was designed to improve the in vitro sperm preservation methods. Thirty normal semen samples were examined in Shiraz, Iran, 2017. Fifteen samples were incubated at 22-27 °C and 15 samples wer...
متن کاملADENOSINE IN THE CENTRAL NERVOUS SYSTEM
Besides being a metabolite of nucleotides like ATP, adenosine is a mediator of neuronal function in the central nervous system. Its actions are mediated by at least three extracellular receptors. In this review different aspects of adenosine such as biosynthesis, release, inactivation and its receptors are discussed. It also covers pre- and postsynaptic effects as well as postreceptor mecha...
متن کاملOsmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels.
Human intestine 407 cells respond to hypo-osmotic stress by the rapid release of ATP into the extracellular medium. A difference in the time course of activation as well as in the sensitivity to cytochalasin B treatment and BAPTA-AM [1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester] loading suggests that ATP leaves the cell through a pathway distinct from volume-re...
متن کاملATP hydrolysis pathways and their contributions to pial arteriolar dilation in rats.
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 281 3 شماره
صفحات -
تاریخ انتشار 2001